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METHODS

METHODS

PROPOSED ALGORITHM: 𝓒	-PC

• Pearlian framework [Pearl’ 09]: 
 Directed acyclic graphs  (DAGs)  encode causal 
 relation between variables. 

• Arrows: Deterministic  functional relations called 
 structural equations. 

• D-separation
• In a DAG, a path p between vertices X and Y is active 

(d-connecting) relative to a set of vertices Z if 
• Every non-collider on p is not a member of Z
• Every collider on p is an ancestor of some members 

of Z
• D-separation and Conditional Independence

• Adjacency faithfulness
• If X and Y are adjacent in G, they are conditionally 

dependent given any subsets of V. 
• Orientation faithfulness
• Let ⟨X, Y, Z⟩ be any unshielded triple in G. 

• If X → Y ← Z, then X and Z are dependent given 
any subset that contains Y;

• Otherwise, X and Z are dependent conditional 
on any subset that does not contain Y

Constraint-based causal discovery approaches often rely on 
a strong assumption known as faithfulness. A conservative 
PC (CPC) that relies on a weaker assumption called 
adjacency faithfulness has been proposed. CPC is 
conjectured to be complete. We show that the CPC 
algorithm is not complete and propose two additional 
sound orientation rules.
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CPC Is Not Complete

True DAG

Step 1: Start from a complete graph

Observed CI statements:x

Step 2: Remove edges based on 
conditional independence

Step 3: For each unshielded triple ⟨𝑿, 𝒀, 𝒁⟩, 
• if Y is not in any separating set, 

orient 𝑿 → 𝒀 ← 𝒁. 
• If Y is in all separating sets, orient 
𝑿 − 𝒀 − 𝒁. 

• Otherwise, mark 𝑿 − Y − 𝒁

Step 4: Apply Meek rules to 
unshielded non-colliders, not 
including triples that are marked 
unfaithful

A critical observation for the example above:
• By Markov condition, implies the 

triple  ⟨𝐴, 𝐵, 𝐶⟩ cannot be a non-collider.
• Hence, ⟨𝐴, 𝐵, 𝐶⟩  should be oriented as 𝐴 → 𝐵 ← 𝐶. 

Sources of Unfaithfulness
Cancelled Paths: in a DAG G=(V, E) with any unfaithful 
distribution p compatible with G, we say the active paths q 
between a set of variables X and another set of variables Y are 
cancelled relative to a set of vertices 𝒁 ⊆ 𝑉, (𝑿, 𝒀	 ⊈ 	𝒁) if 

•                                      and 

•                                   

When all cancelled paths from A to C 
relative to B are along all the  d-connecting paths from 
X to Y relative to J, we denote it as 𝑃𝑎𝑡ℎ 𝐴, 𝐶, 𝐵 ⊆! 𝑃𝑎𝑡ℎ 𝑋, 𝑌, 𝐽

Propagation of Cancelled Paths

Theorem: In a DAG G=(V, E), for disjoint subsets X, Y, Z, U, T ⊆ V, if there exists cancelled path(s) 
from X to Y relative to Z along all the d-connecting paths from U to T relative to Z or one of the 
following conditions hold:
•                                      and  
•                                      and
Then, Z UF-separates U and T.

Example
• Suppose                            where X = {A, B} and J = {H, E}. 
• Left: the paths from X to Y are cancelled relative to Z. Note that Z UF-separates U and M for the DAG on the left 

since the cancelled paths from X to J relative to Z are all along with d-connecting path from U to M relative to Z.
• Right:, the cancelled paths from X to J relative to Z are not all along with d-connecting path from U to M relative 

to Z at the DAG on the right

Blue: the d-connecting path between U and M relative to Z that does not overlap with the cancelled paths. Red: The portion of the cancelled path from A, B to H, E relative to Z that 
does not overlap with the d-connecting path from U to M relative to Z. Purple: The overlapping portion between the cancelled paths from A, B to H, E relative to Z and the d-
connecting path from U and M relative to Z.

CPC output

Revised CPC (RCPC) Algorithm

R5: For every unshielded triple 𝐴, 𝐵, 𝐶  that has been marked unfaithful,
a) if  𝐴 → B ← 𝐶, unmark 𝐴 → B ← 𝐶 as 𝐴 → B ← 𝐶. 

I. Mark all CIs                              as NM (non-Markov) statement for any W that contains B 
and 

II.  If 𝑃𝑎𝑡ℎ 𝐴, 𝐶, 𝐵 ⊆! 𝑃𝑎𝑡ℎ 𝑋, 𝑌, 𝐽 , mark                            as NM statement for any J that 
contains B

b) else, mark                           as NM statement for any S that does not contain B and unmark the 
triple. 
I. If 𝑃𝑎𝑡ℎ 𝐴, 𝐶, ∅ ⊆! 𝑃𝑎𝑡ℎ 𝑋, 𝑌, 𝐷 ,	mark                             as NM statement for any D that 

does not contain B. 
Then, excluding all NM statements, for each unshielded triple 𝐴, 𝑇, 𝐶  that is marked as 
unfaithful:
• If T is not in any set conditional on which A and C are independent, orient 𝐴 − T −	𝐶 as 𝐴 → 

T ← 𝐶.
• If T is in all such sets conditional on which A and C are independent, unmark 𝐴, 𝑇, 𝐶 .

R6: Recursively apply R1, R3, and R4 of Meek rules [Meek’95] to unshielded non-colliders that 
are not marked as unfaithful except that R2 can be applied to any triple. 
• Additionally,  for any unshielded triple 𝐴, 𝑇, 𝐶 	 that is oriented as as 𝐴 → T −	𝐶, if there is an 

undirected path p e.g. Q −⋯− 𝐶 and no triples along p has been marked unfaithful and there 
is a directed path q e.g. Q → ⋯ → 𝐴 . Then, we orient 𝐴 → T ← 	𝐶 (keeping the underline for 
marking NM statement). 

Following step 4 of CPC, we recursively apply R5 and R6 until there is no more edges that can be 
oriented by them. Let G be the resulting graph after step 4. 
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R5: unmark 𝐴, 𝐵, 𝐶 .
R6:  orient 𝐵, 𝐶, 𝐷 	 as an unshielded collider
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Theorem: Under the causal Markov and Adjacency-Faithfulness assumptions, the RCPC algorithm is correct in the 
sense that given a perfect conditional independence oracle, the algorithm returns an extended pattern that 
represents the true causal DAG.


