

RCPC: A Sound Causal Discovery Algorithm under Orientation Unfaithfulness

Kenneth Lee, Murat Kocaoglu

Elmore Family School of Electrical and Computer Engineering, Purdue University

Constraint-based causal discovery approaches often rely on a strong assumption known as faithfulness. A conservative PC (CPC) that relies on a weaker assumption called adjacency faithfulness has been proposed. CPC is conjectured to be complete. We show that the CPC algorithm is not complete and propose two additional sound orientation rules.

Probabilistic Causal Inference Fundamentals

- Pearlian framework [Pearl' 09]: Directed acyclic graphs (DAGs) encode causal relation between variables.
- Arrows: Deterministic functional relations called structural equations.

$$X_i = f(Pa_{X_i}, E_{X_i})$$
 , $E_i \perp \!\! \perp \!\! \perp E_j$

- D-separation
 - In a DAG, a path p between vertices X and Y is **active** (d-connecting) relative to a set of vertices Z if
 - Every non-collider on p is not a member of Z
 - Every collider on p is an ancestor of some members
- D-separation and Conditional Independence

- Adjacency faithfulness
 - If X and Y are adjacent in G, they are conditionally dependent given any subsets of V.
- Orientation faithfulness
 - Let $\langle X, Y, Z \rangle$ be any unshielded triple in G.
 - If $X \to Y \leftarrow Z$, then X and Z are dependent given any subset that contains Y;
 - Otherwise, X and Z are dependent conditional on any subset that does not contain Y

Example (Adj. faithfulness holds with orientation unfaithfulness)

CPC Algorithm [Ramsey et. al'12]

Step 1: Start from a complete graph

Step 2: Remove edges based on conditional independence

Step 4: Apply Meek rules to unshielded non-colliders, not including triples that are marked unfaithful

Step 3: For each unshielded triple $\langle X, Y, Z \rangle$, • if Y is not in any separating set,

- orient $X \rightarrow Y \leftarrow Z$. • If Y is in all separating sets, orient X - Y - Z.
- Otherwise, mark $X \underline{Y} Z$

CPC Is Not Complete

A critical observation for the example above:

- By Markov condition, $(A \not\perp \!\!\! \perp C|B)_P$ implies the triple $\langle A, B, C \rangle$ cannot be a non-collider.
- Hence, $\langle A, B, C \rangle$ should be oriented as $A \to B \leftarrow C$.

Sources of Unfaithfulness

Cancelled Paths: in a DAG G=(V, E) with any unfaithful distribution p compatible with G, we say the active paths q between a set of variables **X** and another set of variables **Y** are cancelled relative to a set of vertices $Z \subseteq V$, $(X, Y \not\subseteq Z)$ if

 $(\mathbf{X} \not\perp \!\!\!\! \perp \mathbf{Y} | \mathbf{Z})_G$ and

When all cancelled paths from A to C relative to B are along all the d-connecting paths from X to Y relative to J, we denote it as $Path(A, C, B) \subseteq_C Path(X, Y, J)$

Revised CPC (RCPC) Algorithm

Following step 4 of CPC, we recursively apply R5 and R6 until there is no more edges that can be oriented by them. Let G be the resulting graph after step 4.

R5: For every unshielded triple $\langle A, B, C \rangle$ that has been marked unfaithful,

- a) if $A \to B \leftarrow C$, unmark $A \to B \leftarrow C$ as $A \to B \leftarrow C$.
- I. Mark all CIs $(A \perp \!\!\!\perp C|W)_P$ as NM (non-Markov) statement for any W that contains B and
- II. If $Path(A, C, B) \subseteq_C Path(X, Y, J)$, mark $(X \perp \!\!\! \perp Y | J)_P$ as NM statement for any J that contains B
- b) else, mark $(A \perp \!\!\! \perp C|S)_P$ as NM statement for any S that does not contain B and unmark the triple.
- I. If $Path(A, C, \emptyset) \subseteq_C Path(X, Y, D)$, $mark(X \perp \!\!\!\perp Y|D)_P$ as NM statement for any D that does not contain B.

Then, excluding all NM statements, for each unshielded triple $\langle A, T, C \rangle$ that is marked as unfaithful:

- If T is not in any set conditional on which A and C are independent, orient $A \underline{T} C$ as $A \rightarrow$ $\underline{\mathsf{T}} \leftarrow \mathcal{C}$.
- If T is in all such sets conditional on which A and C are independent, unmark $\langle A, T, C \rangle$.

R6: Recursively apply R1, R3, and R4 of Meek rules [Meek'95] to unshielded non-colliders that are not marked as unfaithful except that R2 can be applied to any triple.

• **Additionally,** for any unshielded triple $\langle A, T, C \rangle$ that is oriented as as $A \to \underline{T} - C$, if there is an undirected path p e.g. $Q - \cdots - C$ and no triples along p has been marked unfaithful and there is a directed path q e.g. $Q \rightarrow \cdots \rightarrow A$. Then, we orient $A \rightarrow \underline{T} \leftarrow C$ (keeping the underline for marking NM statement).

Theorem: Under the causal Markov and Adjacency-Faithfulness assumptions, the RCPC algorithm is correct in the sense that given a perfect conditional independence oracle, the algorithm returns an extended pattern that represents the true causal DAG.

Example 1 (Application of R5):

Example 2 (Application of R5 and R6):

 $(B \perp \perp D|A,C)_P$ $(A \perp \perp C|B,D)_P$

CPC output

RCPC output

R5: unmark $\langle A, B, C \rangle$.

 $(A \perp \!\!\!\perp C)_P$

 $(A \downarrow \!\!\! \perp C|B)_P$

 $(A \perp \downarrow C | D)_P$

R6: orient $\langle B, C, D \rangle$ as an unshielded collider

Reference

J. Pearl, Causality: Models, Reasoning and Inference. Cambridge University Press, 2009 Spirtes, Peter, Clark Glymour, and Richard Scheines. Causation, prediction, and search. MIT press, 2001. Ramsey, Joseph, Peter Spirtes, and Jiji Zhang. "Adjacency-faithfulness and conservative causal inference." Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence. 2006. Meek, Christopher. "Causal inference and causal explanation with background knowledge." Proceedings of the Eleventh conference on Uncertainty in artificial intelligence. 1995.