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• Pearlian framework [Pearl’ 09]: 
 Acyclic Directed mixed graphs (ADMGs) encode causal  

relation between variables. 

• Arrows: Non-deterministic 
 functional relations called 
 structural equations. 

• In general 

• A path p between X and Y is active relative to Z if
• all non-colliders on p are not in Z and
• all colliders on p are ancestors of some Z in Z.

• Assumptions: 
• An ADMG is given a priori with the known selection 

variable (yellow), a set of predictors (blue) and the target 
(green).
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EFFECTS OF INTERVENTIONS

GRAPH SURGERY ESTIMATOR

is called a graph surgery estimator if  
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• Effects of an intervention

Intervene on Y

Remove incoming edges of Y

• Objectives: Find a set of features that are invariant to the 
distribution shifts for predicting the target variable using 
distributional invariance via Pearl’s do-calculus. 

• Motivation: An existing state-of-the-art approach called 
Graph Surgery Estimator (GSE) takes exponential time to 
search for this set of features [Adarsh et al. ‘19].

• Contributions: Develop a sound and polynomial-time 
algorithm that searches for  surgery estimators, if any.
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Y = f (X1, X2, EY ) Y = y

• There exists a complete algorithm that finds conditional independence query between two sets of variables [Shiptser 
et al. ‘08] .

• Greedy feature selection on the selected conditioning sets.
• Theorem: Each predictor found is guaranteed to be identifiable and ID4IP finds at least one predictor if exists.
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P (Y |do(Q),W)

1.                                 is identifiable from observational 
distribution  and

2.                                  and     
3.  

Example:

• A sound and complete algorithm named ID that uses do-
calculus rules to identify a predictive model from 
interventional distribution [Tian et al. ‘08] .

• Rule 2:
• Two others

P (Y |do(Q),W)

(Y ⊥⊥ S|W)GQ

P (Y |do(Q),W))) != P (Y )

• How to search for different surgery estimators?
• Search through all possible Q and W [Adarsh et. al ‘19]. 
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1. Find Y-rooted C-tree         (red) 
 and intervene on its parents 
(purple) with  conditioning on 
members of the tree (cyan).

2. Find each Ch(Y)-rooted C-trees* union 
with Y-rooted C-tree  (red) 
and intervene on its parents (purple) with 
conditioning on members of the tree 
(cyan).

if S is parent of

TY

TY

ID4IP algorithm:

else

Terminate
Theorem: there is no graph surgery estimator 

* Only the trees whose parents are not S

3. Find each bidirected-nbr(Y)-rooted C-
trees* union with previous C-trees  (red) 
and intervene on its parents (purple) 
with conditioning on members of the 
tree (cyan).

Theorem: there is no graph surgery estimator 

Return the estimator with lowest training loss
If None:

• Test Loss by Runtime Restriction (within 600 seconds):

• Test Loss by Training Sample Size (within 60 seconds):

• Left to right: n= 16, 25, 32 with n/2 latent confounders and 3n directed edges randomly generated. 
• Each variable is binary.
• Selection variable is randomly assigned and the marginal of the child will be changed in the test distribution.
• Set the test loss to be 0.5 if the model fails to find a predictor. 
• For the top row, we use population distribution to train both models.
• For the bottom row, turned all bidirected edges to directed edges if their children has no directed edge to learn 

the training distribution using greedy hill algorithm. 

(Simulated) (Semi-synthetic)

P (Y |do(X,Z),W ) = P (Y |do(X), Z,W )
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Algorithm Sachs (11 
nodes)

Alarm (37 
nodes)

GSE 0.80 0.57

ID4IP 0.80 0.83

Logistic 
regression

0.53 0.52

• We utilize a graphical characterization of the identifiability of conditional causal queries with greedy search to increase the efficiency 
of finding invariant predictors.

• Our algorithm is sound that runs in polynomial time in contrast to the existing work that requires exponential time.
• For future work, several directions are worth pursuing: improve the algorithm for completeness, approximation guarantees for 

greedy-search methods for invariant causal prediction, and combining with causal discovery algorithms. 

F1 score within 120 seconds for two 
real-world datasets: Sachs and 
Alarm. 

• Original graphs were altered to 
introduce latents and selection 
variable.

• Practical scenarios:
• Medical record transfer [Agniel 

et.al 2018]

• Causal identifiability relates to a specific graphical structure 
called hedge [Shiptser et al. ‘08]

• Generalized hedge condition for G =(V, E)
• Let              be the maximal subset such that 
                                     . There is a hedge for                              if

• Two R-rooted C-forests F, F’ exist where R is in 
                                     and Q is in F but not in F’ in G.

• Example:
•  
•  

• Theorem: Generalized hedge ó Unidentifiability
• Helps avoiding searching for unidentifiable queries.

Sachs
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ZC-tree C-forest

ID

• Each node has at most one child
• Only one vertex has no children

• Each node has at most one child
• More than one vertex has no 

children
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if (Y ⊥⊥ Z|X,W )GXZ

P (Y |do(X3))
F = {X3, X4}

F
′
= {X4}

CausaCausa

P (Y|do(Q),W) =
P (Y|do(Q,Z),W \ Z) P (Y|do(Q),W)

Z ⊆ V

An(Y ∪ (W \ Z))G
X∪Z

P (Y |do(X1), X2) =
P (X2|X1, Y )P (Y )

∑
Y P (X2|X1, Y )P (Y )
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Hypothetical intervention 

• Interventional distribution is invariant to changes in 
how X1 is generated.
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