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* Objectives: learn causal graphs using only CI tests
restricted to a collection of conditioning sets.

it is not known the characterization of
causal graphs
conditioning sets. Not all the CI tests are equally reliable.

e Motivation:

learning of from a collection of

* Contributions: propose to learn causal graphs by using
CI tests where the conditioning sets are restricted to a

given set of conditioning sets including the empty set.

* Pearlian framework [Pearl” 09]:
Directed acyclic graphs (DAGs) encode causal

relation between variables.
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X is d-connected with Y given Z

e Arrows: Deterministic
functional relations called

structural equations.
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X is d-separated with Y given Z

* There exists work that characterize and learn causal graphs

from small conditioning set up to size k: LOCI [Wiendobst
et.al "20], kPC [Kocaoglu. "23].

X 1l Y|Z,|Z| < k

* We turther relax the above by taking a more flexible class
\of conditioning sets called conditionally closed sets
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C-covered: In a DAG, X and Yare said to be C-covered if
there does not exist a member C € Cs.t. (X1 Y |Q)p
« Example

« LetC = {0,{Y}}.

» ZandY are C-covered in D.

 Z and Q are not C-covered in D.
C -Closure graphs of D, S¢(D): If X and Y are C-covered:
)if X € An(Y) inD ,thenX - Y in Se(D)
(i) if X € An(Y) and Y € An(X)in D, then X < Y in §(D)
Else: X and Y are not adjacent in S¢ (D).
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Input: observational data, a conditionally closed set C, CI tester
1. Starts from a complete graph with circle edge o-0

pair X,Y where Sy y does not contain Z

C -PC Learning process:

Ground truth
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After step 4

 Let { ={I;} be a set of CI statements of the form I; =
(X,Z,Y)i.e.(X 1LY |Z) or (XJLY|Z) A setC is called
conditionally closed if the following holds
1 9 ecC
2. AIX,YEV,(X,C,Y)e{= (A,C,B) € for all AB €V
and forall CeC

2. Find separating sets Sy y for every pair of variables X,Y by conditioning on C € C.
3. Update M by removing the edges between pairs that are separable
4. Orient unshielded collider of M: For any induced subgraph Xo — 0Zo — oY, set Xo — Z < oY for any non-adjacent

5. Apply FCI orientation rules [Zhang “08] and kPC orientation rules [Kocaoglu “23]
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After Step 5

PC Output: \ Py

kPC with k=1 Output:
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D D/  Theorem: C-PC algorithm is sound for learning C-essential graph given a
conditional independence oracle under causal Markov and C-faithfulness Yy — O
@ a \ assumptions |
| \
e e g @ (S: Simulated , R: real-world)
S.(D S (D' * S: Conditioning on high-dimensional variables (S) * R: The Cognition and Aging USA
C ( ) C ( ) 100 random DAGs of size 30. Each has 2 or 30 states randomly assigned with 0.7 and 0.2 probabilities (CogUSA) Study [McArdle et. al’07]
L L. ] ] . * 16 discrete variables 2 to 13 states), 8
* Apply heuristic search to get conditioning sets that yield at least 5 samples per entry in the contingency variables have missing data. Incorrect
e Lemma: C-closure graphs SC" (D) and DAG D entail the same table up to order 1. (red) and correct (green) causal order.
- ’ ' * Fl-skeleton (left two); F1-arrowhead (right two); The closer to the bottom right the better C-PC only condition on variables that
set of d-separation statements given any C € C. ( ) (rig ) 2 do not have missing valtes,
» Chisq tests with test-wise deletion.
. . CDF of F{X, N=500 ar N= a C-PC (left); MVPC [Tu et.al “19] (righ
* Theorem: Two DAGs D,D' are C-Markov equivalent if and Lol S B o CDF of F§", N=500 . CDF of Fi2, N=500 (teft) [Tu et.al "19] (right)
: , :
\only it S¢(D), S¢(D’) are Markov equivalent. 0.8 0.8 o . KPC.K=0
0.6 —— kPC,k=1
5 . u 0-6 u 06 KPC, k=2
) o4 = “ 0.4/ Y 0.4 "o GES
3 ' GRaSP
0.2 ¢ 0.2/ 0.2 — CPC
. . . 0.01 = 02 02 o6 0.0 —— === | _ 0.0 , | 1 _
* Characterizing the equivalence class of C -closure 2 ccory ' 00 01 02 03 04 00 01 02 03 04
Fl-score Fl-score
graphs using edge union operation: CDF of F&, N=2000 COF of F¥". N=2000 CoF of Fi. 12000
c Xo—oY=XoYUX<YUX-oY L0 10 | 1ol -
e Xo->o Y =XooYUX->Y i 0.8 0.8 0.8 ---- kPC,k=0
(W> | —— KkPC,k=1
s X—-YV=X<YUX>DY — u 06 u 061 w06 kPC, k=2
/ I “ 0.4 Y 0.4 ©oal ! ---- GES
i GRaSP
- ' .27 0.2 ' 21 7 —— CPC
» C-essential graphs: any DAG D, the @o—» y — @ o2 P : 02
. ] - 0.0 —_ _ 0.
edge union of all € -Closure graphs 0 0.0 022 0. R~ Y T w Y
. . Fl-score Fl-score Fl-score
that are Markov equivalent to S¢(D) is c ( D) \
\called C-essential graph of D, e-(D). C
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