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• Pearlian framework [Pearl’ 09]: 
 Directed acyclic graphs  (DAGs)  encode causal 

 relation between variables. 

• Arrows: Deterministic 

 functional relations called 

 structural equations. 

• There exists work that characterize and learn causal graphs 

from small conditioning set up to size k: LOCI [Wienöbst 

et.al ’20], kPC [Kocaoglu. ’23].

• We further relax the above by taking a more flexible class 

of conditioning sets called conditionally closed sets

CONDITIONALLY CLOSED SETS 𝓒

𝓒-COVERED and 𝓒-CLOSURE GRAPHS

• Let 𝜁 = {𝐼𝑖} be a set of CI statements of the form 𝐼𝑖 =

𝑋, 𝒁, 𝑌  𝑖. 𝑒. 𝑋 𝑌 𝒁) or 𝑋 𝑌 𝒁)  A set 𝓒  is called 

conditionally closed if the following holds

1. ∅ ∈ 𝓒

2.  ∃X, Y ∈ 𝐕, (X, C , Y) ∈ ζ ⟹ A, 𝐂, B ∈ ζ for all A, B ∈ 𝐕 

and for all  𝐂 ∈ 𝓒

• Objectives: learn causal graphs using only CI tests 

restricted to a collection of conditioning sets.

• Motivation: it is not known the characterization of 

learning of causal graphs from a collection of 

conditioning sets. Not all the CI tests are equally reliable.

• Contributions:  propose to learn causal graphs by using 

CI tests where the conditioning sets are restricted to a 

given set of conditioning sets including the empty set.

Input: observational data, a conditionally closed set 𝓒, CI tester 

1. Starts from a complete graph with circle edge o-o

2. Find separating sets 𝑆𝑋,𝑌 for every pair of variables 𝑋, 𝑌 by conditioning on 𝐂 ∈ 𝓒.

3. Update 𝑀 by removing the edges between pairs that are separable

4.  Orient unshielded collider of 𝑀: For any induced subgraph 𝑋𝑜 − 𝑜𝑍𝑜 − 𝑜𝑌, set  𝑋𝑜 → 𝑍 ← 𝑜𝑌 for any non-adjacent 

pair 𝑋, 𝑌 where 𝑆𝑋,𝑌 does not contain Z

5. Apply FCI orientation rules [Zhang ‘08] and kPC orientation rules [Kocaoglu ‘23]
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• 𝓒-covered: In a DAG, 𝑋 and 𝑌are said to be 𝓒-covered if 

there does not exist a member 𝐂 ∈ 𝓒 s.t. 𝑋 𝑌 𝐂)𝐷 

• Example

• Let 𝓒 = {∅, 𝒀 }.

• 𝑍 and 𝑌 are 𝓒-covered in 𝐷.

• 𝑍 and 𝑄 are not 𝓒-covered in 𝐷.

• 𝓒 -Closure graphs of 𝐷, 𝒮𝒞 𝐷 : If 𝑋 and 𝑌 are 𝓒-covered: 

(i) if 𝑋 ∈ 𝐴𝑛(𝑌) in 𝐷 , then 𝑋 → 𝑌 in 𝒮𝒞(𝐷)

 (ii) if 𝑋 ∉ 𝐴𝑛 𝑌  and 𝑌 ∉ 𝐴𝑛(𝑋) in 𝐷, then 𝑋 𝑌 in 𝒮𝒞(𝐷)

 Else: 𝑋 and 𝑌 are not adjacent in 𝒮𝒞(𝐷).

• S: Conditioning on high-dimensional variables (S)

• 100 random DAGs of size 30. Each has 2 or 30 states randomly assigned with 0.7 and 0.2 probabilities

• Apply heuristic search to get conditioning sets that yield at least 5 samples per entry in the contingency 

table up to order 1.  

• F1-skeleton (left two); F1-arrowhead (right two); The closer to the bottom right the better

(S: Simulated , R: real-world)

• We propose a sound algorithm called C-PC for learning causal graphs from a collection of conditioning sets known as conditionally 

closed sets. We extend an existing algorithm called k-PC that exhausts all CI tests of order up to some integer k to a setting where CI 

tests are restricted to a collection of conditioning sets.

• For future work, we want to further relax the restriction of a conditionally closed set and investigate whether one can systematically 

leverage arbitrary CI statements on top of all marginal independence relations for learning causal graphs.
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• Lemma: 𝓒-closure graphs 𝒮𝒞(𝐷) and DAG 𝐷 entail the same 
set of d-separation statements given any 𝐂 ∈ 𝓒.

• Theorem: Two DAGs 𝐷, 𝐷′ are 𝓒-Markov equivalent if and 

only if 𝒮𝒞(𝐷), 𝒮𝒞(𝐷’) are Markov equivalent.

Z

W

Y

J

Q

• Characterizing the equivalence class of 𝓒 -closure 

graphs using edge union operation:

• 𝑋𝑜 − 𝑜 𝑌 ≔ 𝑋 𝑌 ∪ 𝑋 ← 𝑌 ∪ 𝑋 → 𝑌

• 𝑋𝑜 →  𝑌 ≔ 𝑋 𝑌 ∪ 𝑋 → 𝑌

• 𝑋 −  𝑌 ≔ 𝑋 ← 𝑌 ∪ 𝑋 → 𝑌

• 𝓒–essential graphs: any DAG 𝐷, the

edge union of all 𝓒 -Closure graphs 

that are Markov equivalent to 𝒮𝒞(𝐷) is 

called 𝓒–essential graph of 𝐷, 𝜀𝒞(𝐷).
𝜀𝒞(𝐷)

Z

W

Y

J

Q

Ground truth After step 4 After Step 5

𝓒 -PC Learning process: PC Output:

kPC with k= 1 Output:

• Theorem: 𝓒-PC algorithm is sound for learning 𝓒-essential graph given a 

conditional independence oracle under causal Markov and 𝓒-faithfulness 
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• R: The Cognition and Aging USA 

(CogUSA) Study [McArdle et. al’07] 
• 16 discrete variables 2 to 13 states), 8 

variables have missing data. Incorrect 

(red) and correct (green) causal order. 

• 𝓒-PC only condition on variables that 

do not have missing values.

• Chisq tests with test-wise deletion.

• 𝓒-PC (left); MVPC [Tu et.al ‘19] (right)

X is d-separated with Y given  Z X is d-connected with Y given Z

,
D-separation
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